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Inverse Problems
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= H( ∗)

• Given �, determining or (H) is a Forward Modeling Problem;
• Given , determining � is an Inverse Modeling Problem.

Example:
• Forces on a particle are �, trajectory of the particle is .

Inverse problems are widely encountered in:
• Signal (or image) acquisition, optics, astrophysics, and seismic geo-exploration.



Inverse Problems in Signal Acquisition Systems
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Natural image/
signal, � 2 R

Acquisition system
H

Observations
H( �) = 2 R

Inverse problem

Goal is to recover �, given the H and .

Challenge 1: High sample complexity:

• In general, large number of observations may needed for accurate solution;
• Requires � , implying over-determined system.

Obtaining large number of measurements is expensive

Use the fact that the natural signals are compressible!



Compression of the Natural Signals
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It is observed empirically that the natural signals can be compressed.

• , A stored natural signal can be well approximated by sparse signal.
• Sparse signal: a signal with most of its components equal to zero.
• Sparse approximation is obtained by appropriate change of basis.
• Commonly used basis are: JPEG (DCT), or wavelet basis.

Original image (left), and its compressed version using DCT (right)

Why to take overdetermined samples in first place?

How to use the compression property during the signal acquisition itself?



Compressive Sensing
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• Aim is to acquire the compressed version of a signal directly with � .
• Ill-posed problem, with infinite solutions in general.
• Achieved by exploiting the compressibility of the signal.

The natural signals obey some low-dimensional structure

If such structure is known, accurate reconstruction is possible with �

Formally, We aim to solve a constrained optimization problem:

b = arg min ( �); (1)
s. t. � 2 S;

where,

• where is an objective function involving and H, e.g. ( ) = k �H( )k22
• The set S � R captures the structure that obeys.

Common choices for S : Sparsity, structured sparsity, total variation.



Sparsity as a Prior
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The prior S = f 2 R jk k0 � g

• Most natural signals and images are sparse in some basis,
• It makes the sparsity the obvious choice as a prior.
• Under certain conditions, perfect recovery can be achieved.

Disadvantages:

• Poor discrimination capabilities: many noise-signals are sparse.
• Performs poorly when is very low, as no learned information about the
signal manifold.

These are sparse in DCT basis, but don’t resemble to natural images!



Generative Model as a Prior
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The prior S should closely mimic the natural signals manifold.

• Such S can be obtained by generative models trained on natural data.
• State-of-the-art deep generative models (e.g. GANs) can be employed.

Generative Adversarial Networks (GANs):

• Mimics the natural data distribution through adversarial training,
• Input is a random vector , the output ( ) resembles a natural image.

Generative Prior:
S = f 2 R j = ( ); 2 R g:
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Problem Setup
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We aim to recover � 2 R given H, and H( ) = 2 R .

• We assume � .
• H is parameterized by matrix � .

H(�) is linear =) Linear inverse problem

Imaging problem of the form = �:

• Compressive sensing, where � , and is i.i.d. Gaussian.
• Image inpainting, where rows of contains blocks of zeros.
• Image super-resolution, with being downsampling operator.

H(�) is nonlinear =) Nonlinear inverse problem

For e.g.:

• Sigmoid recovery; with H( ) = ( ) +

• Phase retrieval, with H( ) = j j+



Employing Generative Priors: Prior Work (CSGM [1])
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Key assumption:

• The range of well-trained provides good approximation of set of natural
images.

CSGM (Bora et al.):

• Obtain a well-trained Generator : R ! R .
• Construct the estimate ^ as follows:

^ = arg min
2R
k � ( )k22; ^ = (^) (2)

• Solve for ,̂ to obtain ^ = (^).

Limitations:

• No discussion about an algorithm to perform non-convex optimization of
Eqn. (2).

• Instead, they use gradient descent directly on Eqn. (2)
• Study of the algorithmic costs of solving the optimization is not provided.



Our Contributions

9

In this work,

• We propose a PGD algorithm for solving linear inverse problems.
• We provide proof of linear convergence of our algorithm.
• We extend the algorithm to a much wider range of nonlinear
problems.

• We present empirical results supporting our claims.
• We also extend our approach to handle model mismatch.

Key assumptions:

• Availability of a well-trained Generator .
• Availability of a projection oracle onto ( );
• Given any vector 2 R ,

0 = ( ) 2 Range( ) that minimizes
k � 0k22.



PGD Algorithm
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For linear case of compressive sensing, we set as i.i.d. Gaussian, as
Euclidean norm. We seek,

b = ( ) = arg min
2 ( )

k � k22 (3)

PGDGAN: Projected Gradient Descent using GAN priors

1. Initialization: Initialize 0 with zero vector.

2. Estimation: For = 1; 2; :::; :

• Gradient descent update.

• Projection on the span of generator ( ).

Gradient descent update
Projection on the span of generator

Reconstruction

Initialization



PGD Algorithm
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Step 1: Gradient Descent Update
application of a gradient descent update rule on the loss function (�) with
the learning rate �.

 + � ( � )

Step 2: Projection

+1 = ( ) :=

�
arg min k � ( )k

�
;

We use gradient descent (implemented
via back-propagation) as a projection
oracle, with learning rate � .

( )

k � k

( )

k +1 � ( )k

• In each of the iterations, we run gradient descent updates for
calculating the projection.
� is the total number of gradient descent updates on



Linear Convergence of PGDGAN Algorithm
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Theorem (Guarantee: linear convergence)
( )

�

( +1) �
�
1

�

� 1

�
( )

Proved using:

• The difference of any two signals in S lies away from nullspace of . (Set
Restricted Eigenvalue Condition).

• Spectral norm of is upper-bounded by p
.
• (�) is a orthogonal projection operator.
• The learning rate obeys: 1

2
 < � < 1





Experimental Setup: Compressive Sensing

• We provide results on two different datasets using two different GAN
architectures.

• The results are compared with the CSGM [1], and Lasso-DCT [5].

• MNIST Dataset:
• We construct a simple GAN with both and are fully-connected neural
networks with one hidden layer.

• is constructed as: 20 � 200 � 784; is constructed as 784 � 128 � 1.
• Dimensions of the input is = 20.
• Test images are chosen from the range of the to get rid of representation
error.

• = 15 and = 200. Thus, the total number of update steps is fixed to
3000.

• For comparison, we use the reconstruction error = kb � �k2 .
• We reconstruct the images with = 100 measurements.

13



Experimental Results: Compressive Sensing
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PGDGAN is able to explore the space outside the range of

Helps in mitigating the effects of local minima

Doesn’t require random restarts
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